Vanishing viscosity limit of the three-dimensional barotropic compressible Navier–Stokes equations with degenerate viscosities and far-field vacuum

نویسندگان

چکیده

We are concerned with the inviscid limit of Navier-Stokes equations to Euler for barotropic compressible fluids in $\mathbb{R}^3$. When viscosity coefficients obey a lower power-law density (i.e., $\rho^\delta$ $0<\delta<1$), we identify quasi-symmetric hyperbolic--singular elliptic coupled structure control behavior velocity near vacuum. Then this is employed prove that there exists unique regular solution corresponding Cauchy problem arbitrarily large initial data and far-field vacuum, whose life span uniformly positive vanishing limit. Some uniform estimates on both local sound speed $H^3(\mathbb{R}^3)$ respect also obtained, which lead strong convergence solutions finite mass energy $L^{\infty}([0, T]; H^{s}_{\rm loc}(\mathbb{R}^3))$ any $s\in [2, 3)$. As consequence, show that, viscous flows, it impossible $L^\infty$ norm global vacuum decays zero asymptotically, as $t$ tends infinity. Our framework developed here applicable same other physical dimensions via some minor modifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow

We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...

متن کامل

Vanishing Viscosity Limit to Rarefaction Waves for the Navier-Stokes Equations of One-Dimensional Compressible Heat-Conducting Fluids

We prove the solution of the Navier-Stokes equations for one-dimensional compressible heat-conducting fluids with centered rarefaction data of small strength exists globally in time, and moreover, as the viscosity and heat-conductivity coefficients tend to zero, the global solution converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly away from the i...

متن کامل

Vanishing Viscosity in the Barotropic b-Plane

The initial boundary value problems associated with the inviscid barotropic potential vorticity equation in the b-plane and its viscous analogue are considered. It is shown that the solution velocity to the viscous equation converges to the inviscid solution in a C1 sense for finite times and that, under additional smoothness assumptions on the inviscid flow, this convergence can be extended to...

متن کامل

Global Weak Solutions to the Compressible Quantum Navier-Stokes Equations with Damping

The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations with damping is proved for large data in three dimensional space. The model consists of the compressible Navier-Stokes equations with degenerate viscosity, and a nonlinear third-order differential operator, with the quantum Bohm potential, and the damping terms. The global weak solution...

متن کامل

Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data

We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions to the compressible Euler equations may blow up near the origin at certain time under some circumstance. The central feature is the strengthening of waves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2022

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.4171/aihpc/4